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ABSTRACT

High Throughput FPGA Configuration Using a Custom DMA Configuration Controller

Peter William Zabriskie
Department of Electrical and Computer Engineering, BYU

Master of Science

SRAM-based Field Programmable Gate Arrays (FPGAs) must be programmed with config-
uration data every time they are powered on. In addition to initially programming an FPGA, there
are many other applications that require access to FPGA configuration memory such as partial re-
configuration, fault injection, and memory scrubbing. This thesis describes a system that provides
high-speed, programmable configuration management for Xilinx FPGAs through external inter-
faces. This system is an improvement upon the JTAG Configuration Manager (JCM) previously
created at BYU. The JCM consists of a custom I/O board paired with a MicroZed development
board which includes a Xilinx ZYNQ SoC. This platform is used to implement a flexible config-
uration management system that can communicate with Xilinx FPGAs at high speeds using the
JTAG and SelectMAP interfaces.

The improved system described in this thesis increases the maximum data transfer rate of
the JCM’s JTAG and SelectMAP interfaces and dramatically decreases the processor utilization
of user programs running on the JCM. This is accomplished by incorporating a Direct Memory
Access (DMA) engine and interrupts into the system. In addition to faster data rates, these changes
and the decrease in processor utilization also allow the JCM to manage up to eight JTAG chains
simultaneously with the use of a special I/O card.

Keywords: FPGA configuration, JTAG, DMA, SelectMAP
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CHAPTER 1. INTRODUCTION

Field Programmable Gate Arrays (FPGAs) are integrated circuits that can be reconfigured

to perform a wide variety of functions [1]. Their flexibility and low up-front development costs

make them an attractive solution for systems produced on a small scale, including space computing

systems such as those found in satellites and other spacecraft. They are also seeing increased use

in large-scale applications such as servers and data centers [2].

Many FPGAs use Static Random Access Memory (SRAM) to store data that determines

the current configuration of the FPGA. This data must be loaded into the FPGA every time it is

powered on. The size of the configuration data of modern FPGAs can reach up to 100 MB, making

the speed at which configuration data can be loaded into an FPGA a concern for many designers.

This can be even more of a concern in applications where FPGA configuration memory is used

during operation for reconfiguration, verification, or other purposes.

One such application is evaluating the reliability of FPGA designs. Reliability is an impor-

tant consideration in many systems, but especially for those that are deployed in environments with

high levels of radiation. Exposure to radiation can potentially corrupt bits within the FPGA con-

figuration memory, changing the behavior of the FPGA [3]. If the memory is corrupted and FPGA

behavior changes, the FPGA or the entire system could potentially fail. The effects of radiation

and memory corruption on FPGAs is a major area of research conducted in BYU’s Configurable

Computing Lab.

To better understand and mitigate the effects of FPGA memory corruption, the FPGA con-

figuration memory must be effectively tested and monitored. A common method for accessing

FPGA configuration memory is the Joint Test Action Group (JTAG) serial protocol [4]. It is imple-

mented on nearly all Printed Circuit Boards (PCBs) as a means of testing the connections between

chips on the board. Because it is present on most PCBs, FPGA manufacturers include ways to in-

teract with their devices using JTAG as well. The JTAG Configuration Manager (JCM) is a system

1
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developed at BYU that communicates with Xilinx FPGAs using JTAG [5]. It can inject faults to

simulate memory corruption, scrub memory to fix errors as they occur during testing, and detect

memory upsets during radiation tests. These functions can be difficult to manage with commer-

cially available FPGA programmers, but the JCM has been developed from the ground up as a tool

to aid in fault injection and radiation testing.

However, some aspects of the design of the JCM significantly limit its performance. In

particular, inefficient polling techniques and data transfers limit the rate at which configuration

data can be transferred. The work presented in this thesis addresses these issues by adding Direct

Memory Access (DMA) and interrupt capability to the existing JCM system. In addition, the

SelectMAP interface, a parallel interface for accessing the configuration memory of Xilinx FPGAs,

has also been implemented in the JCM.

After these changes, the data rate when transferring data over JTAG using the JCM ap-

proaches the maximum possible data rate for a given JTAG clock frequency. The SelectMAP

interface also provides data rates of up to 950 Mbps, which is nineteen times the fastest possible

data rate using JTAG. The processor utilization during data transfers also decreases dramatically,

freeing up processor resources to be used by the Linux kernel or other user processes. This de-

crease in utilization also allows the JCM to manage up to eight JTAG devices simultaneously using

a custom I/O board.

This thesis begins with a chapter describing the details of FPGA configuration and mo-

tivating the need for high-speed configuration management. This chapter describes how FPGA

configuration memory is stored as well as applications that require access to it. Chapter 3 covers

the background of the JCM, including the SelectMAP module that was developed before the intro-

duction of DMA and interrupts in the new system. The performance of the JTAG and SelectMAP

interfaces of the JCM are then analyzed and solutions are proposed to increase performance. Chap-

ter 4 gives some background about DMA and then describes the new DMA firmware system that is

implemented in the Programmable Logic (PL) portion of the JCM. Chapter 5 describes the changes

that were made in the JCM software to support the new features added to the firmware. Chapter

6 presents performance data obtained using the new JCM system and compares it to performance

data from the old system. Finally, Chapter 7 concludes this thesis and describes possibilities for

future work.

2
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CHAPTER 2. XILINX FPGA CONFIGURATION

FPGAs are powerful and flexible tools for implementing digital logic. They can be recon-

figured to perform a wide variety of tasks during the design process and, if necessary, even years

after a system is deployed. This chapter describes the details of Xilinx FPGA configuration that

must be understood in order to fully appreciate the contributions of this thesis. In particular, the

structure of Xilinx FPGAs is described, including how configuration information is stored. Differ-

ent interfaces for accessing the FPGA configuration data are then presented. Finally, the ways that

this information is used during FPGA operation and testing are then described.

2.1 FPGA Structure and Configuration

The heart of an FPGA is an array of programmable logic blocks with configurable signal

routing between them. Each logic block contains Look-Up Tables (LUTs), registers, and other

basic structures such as multiplexers and adders. Used in combination, these basic elements can

implement arbitrary digital logic functions [1]. In addition to programmable logic blocks, modern

FPGAs also often include specialized modules such as digital signal processors or multi-gigabit

transceivers that can be used to speed up some operations or handle data movement [6]. Such

modules are often referred to as hard blocks, as opposed to the soft programmable logic blocks.

Table 2.1: Configuration File Sizes of Xilinx FPGAs

FPGA Part Configuration File Size
Virtex-4 LX200 [7] 6.12 MB
Virtex-5 TX240T [8] 7.84 MB
Virtex-6 475T [9] 18.68 MB
Virtex-7 1140T [10] 45.91 MB
Virtex UltraScale 440 [11] 122.99 MB
Virtex UltraScale+ 13P [11] 108.07 MB

3
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All of these components must be configured, including routing of inputs and outputs, to

correctly implement the user-specified circuit on the FPGA. The data that specifies the current

configuration of an FPGA is stored in Static Random Access Memory (SRAM) cells collectively

known as configuration memory (CRAM). This data includes programmable logic block config-

uration, signal routing, I/O buffer configuration, and initial flip flop values among other things.

Because SRAM is volatile memory, all of this data must be loaded into CRAM every time the

FPGA is powered on. As FPGAs have gotten larger and more complex over the years, the amount

of CRAM necessary to contain all of the configuration data has increased dramatically. Table 2.1

shows the size of the configuration file for the largest FPGA part of each generation of Xilinx FP-

GAs starting with the Virtex-4 series which released in 2005. With configuration files potentially

larger than 100 MB in the newest lines of Xilinx FPGAs, loading all of this data into CRAM can

take a significant amount of time.

SRAM cells are also vulnerable to a phenomenon called a Single Event Upset (SEU) [3].

An SEU occurs when high-energy particles pass through a transistor, changing its state from off

to on or vice versa. This means that CRAM can change unexpectedly during operation, possibly

causing a change in circuit behavior and output. For most applications, SEUs are not a concern

due to the very low frequency of SEU occurrences or low reliability requirements of a particular

system. However, for high-reliability applications or those deployed in environments where more

radiation is present, the effects of SEUs on FPGA behavior are important to consider. In order to

understand and mitigate those effects, efficient management of CRAM data is essential.

2.2 Accessing the FPGA Configuration

This section covers the basics of accessing the configuration memory of Xilinx FPGAs.

The first subsection describes the FPGA configuration registers used when interacting with the

configuration memory. The second subsection explains the commands that are sent to the FPGA

configuration module via the interfaces described in Section 2.3 when reading or writing these

registers. All of the information in this section can be found in [10].

4
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2.2.1 Configuration Registers

The configuration memory of Xilinx FPGAs is modified exclusively through reads and

writes to a set of registers. These registers serve various functions, such as option registers that

can be written to enable or disable different features of the FPGA or status registers that contain

information about the internal state of the device.

This section will only deal with a few of the most commonly used registers: Frame Data

Register, Input register (FDRI); Frame Data Register, Output register (FDRO); Command register

(CMD); and Frame Address Register (FAR). FDRI and FDRO function as input and output ports

for the CRAM. All CRAM data written to or read from the FPGA must pass through these registers.

The FAR is written with the address in CRAM that should be accessed through FDRI and FDRO.

Finally, CMD can be written with commands that instruct the configuration control logic to perform

various operations.

2.2.2 Configuration Command Sequences

All access to FPGA configuration memory in Xilinx devices is handled by a single module

in the FPGA. This module receives and executes commands that are received through the various

configuration interfaces that are described in Section 2.3. Most of these commands are given in the

form of instructions that specify read or write operations on configuration registers. The details of

the structure of these read and write instructions, referred to as packets, can be found in [10].

An example of how these commands are used to read from CRAM is shown in Table 2.2.

The first command sent is a sync word that must be received by the configuration module before

it can accept and process any further commands. After this, a NOOP command is sent before

sending a command to write the CMD register. The data to be written to CMD comes immediately

after the write command. In this case, it is a command signaling to the configuration module that

we want to read CRAM. This is followed by a few more NOOPs before the command to write

the FAR and the address to be written to the FAR are sent. Finally, two commands are sent that

actually initiate the CRAM read: one command to read FDRO, and another to specify how many

words are to be read. After a few more NOOPs, the CRAM data is available to be read through

the same interface that has been sending commands. The process of actually reading the requested

5
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Table 2.2: Example Command Sequence to Read CRAM in Xilinx FPGAs

textbfConfiguration Command Description
0xAA995566 Sync word
0x20000000 NOOP
0x30008001 Write CMD Register

0x00000004
Read Configuration Command
(Written to CMD Register)

0x20000000 NOOP
0x20000000 NOOP
0x30002001 Write FAR

0xXXXXXXXX Frame Address
0x28006000 Read FDRO
0x50000065 Read Length Packet (101 Words)
0x20000000 NOOP
0x20000000 NOOP

0xXXXXXXXX
...

Read data returned from CRAM
(101 Words)

data depends on the configuration interface currently in use. These interfaces will be described in

the following section.

2.3 Configuration Interfaces

Xilinx FPGAs provide several interfaces for configuration memory access. All of these

interfaces use the same set of commands to read and write configuration registers as described in

the previous section, but the way these commands are sent and received can vary. This section dis-

cusses the Joint Test Action Group (JTAG) and SelectMAP interfaces that are used extensively by

the system described in this thesis. These are both external interfaces that provide off-chip access

to the FPGA configuration module. Internal interfaces that provide on-chip communication with

the configuration module, such as the Internal Configuration Access Port (ICAP) and Processor

Configuration Access Port (PCAP), will not be described here because we are only interested in

external access to configuration memory. When discussing these interfaces throughout this section,

the FPGA is referred to as the slave and the device sending commands to the slave’s configuration

module through one of these interfaces is referred to as the master.
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Figure 2.1: Devices connected on a JTAG chain

2.3.1 JTAG

The most common method for accessing FPGA configuration memory is the JTAG inter-

face [4]. JTAG is a serial interface that was originally developed to test connections between chips

on a Printed Circuit Board (PCB) to verify that there were no errors during the manufacturing pro-

cess. It has also been adapted as an external means of communicating with processors and FPGAs

for programming and debugging purposes. Practically all modern FPGAs include a JTAG interface

that provides easy access for configuration management.

The JTAG interface consists of 4 signals: Test Clock (TCK), Test Mode Select (TMS), Test

Data In (TDI), and Test Data Out (TDO). An external device, referred to as the master, can connect

to these signals on a PCB and communicate with all of the slave devices on the board. The JTAG

master provides the TCK signal during data transfers and uses TMS to change the state of slave

devices before transferring data. The TDI and TDO signals transfer data from master to slave and

slave to master respectively. These signals are connected to devices on a PCB as shown in Figure

2.1. Devices connected in this manner are referred to as a JTAG chain. Theoretically, there is no

limit to the number of devices that could be chained together in this manner. However, we have

observed that some JTAG chain configurations limit the maximum TCK frequency due to long

signal paths or noisy connections.

In order to communicate with the configuration module of a Xilinx FPGA, the JTAG con-

troller on the slave device must first be put into the proper state. This is done as the JTAG master

sends TMS, TCK, and TDI signals to load the instruction register of the JTAG interface with the
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correct value. When interacting with the configuration module, the instruction register must be

loaded with the CFG IN instruction when writing data to the slave or the CFG OUT instruction to

read data from the slave as defined in [10]. After the proper instruction is loaded, the master can

send or receive data as needed.

A more detailed description of JTAG signals and operation can be found in [12], but the

most important fact about JTAG in the context of this work is that all data passing between master

and slave is transferred 1 bit at a time through the TDI and TDO signals. This serial transmission,

combined with the relatively slow maximum clock speeds and control overhead, means that data

transfers using JTAG can be slow. However, the low implementation cost and universal adoption

make it an attractive solution for configuration management.

2.3.2 SelectMAP

SelectMAP is an external interface for configuration access available on Xilinx FPGAs

[10]. This interface can be used to perform the same configuration management functions as JTAG,

but with additional bandwidth by providing more data pins. By using more pins, configuration

data can be transferred much more quickly than a serial interface such as JTAG. However, these

additional data pins come at the cost of user I/O that could potentially be used for something else.

Also, there are many JTAG-specific operations not directly related to configuration management,

such as testing connections between parts on a PCB, that are not available using SelectMAP. It

can only be used to communicate with the configuration module of Xilinx FPGAs. Because of

these limitations, the SelectMAP interface is not as widely used as JTAG and is mostly reserved

for applications that require frequent, high-speed configuration management.

The SelectMAP interface consists of an 8-, 16-, or 32-bit bidirectional data bus as well as

a Configuration Clock signal (CCLK), a Chip Select signal (CSI), and a Read Write select signal

(RDWR). Mode select pins are also used to determine whether the FPGA is a SelectMAP master,

meaning it generates control signals, or slave, which only receives control signals. CCLK, CSI,

and RDWR are outputs in master mode and inputs in slave mode. The rest of this section will

assume that the FPGA is set to slave mode.

The CCLK input must be provided by a device that is acting as master. This device will

control the clock and send commands to the slave device while the slave accepts data or responds

8
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Figure 2.2: SelectMap write procedure (32-bit mode)

accordingly. The waveform in Figure 2.2 shows an example of a write operation using SelectMAP

in 32-bit mode. The master holds CSI and RDWR high until one cycle before the transfer begins.

RDWR is lowered first to indicate that a write is about to take place and its value is latched by the

slave on the rising clock edge. The master then outputs the first word of the transfer on the data

pins and lowers CSI on the falling clock edge. Data from the bus is loaded by the slave on the rising

clock edge as CSI and RDWR are held low. New data words are output on falling clock edges until

the transfer is complete. At this point, the master pulls CSI high after the final rising clock edge

and pulses the clock once more to allow the slave to latch the new CSI value1. A SelectMAP read

is almost identical to the write sequence except that the RDWR signal is held high to designate a

read and the data bus changes direction so data is transmitted from slave to master.

The ordering of the data pins is not intuitive and requires some explanation. Each individual

byte is bit-swapped, meaning that they are put in reverse order. The mapping for each bit in a word

to a data pin is shown in Figure 2.3 for 32-, 16-, and 8-bit modes. When using 16- or 8-bit mode,

the most significant portion of the word is output first. For example, imagine we want to send the

word 0x12345678. In 16-bit mode, the master would send 0x1234 (0x48C2 after bit swapping) on

the first clock and 0x5678 on the second clock. In 8-bit mode, the master would send 0x12 on the

first clock, 0x34 on the second, and so on. Data is received from the slave in the same order.

The SelectMAP interface is faster than JTAG for configuration management due to its

lack of control overhead and parallel data bus. Table 2.3 shows a comparison of the maximum

achievable data transfer rates of JTAG and SelectMAP based on maximum clock rate data obtained

from [13]. The high potential data rates make SelectMAP an attractive configuration management

1This step is important because it prevents the master from accidentally triggering an ABORT sequence. The
ABORT sequence is a feature of the SelectMAP interface that exposes internal state information of a slave device on
the data pins for a fixed number of clock cycles. It is triggered when RDWR changes value while CSI is asserted.

9



www.manaraa.com

Figure 2.3: Data pin mapping with bit swapping [10]

Table 2.3: JTAG And SelectMAP Data Rates

Interface Maximum Clock Rate Maximum Data Rate
JTAG 66 MHz 66 Mbps
SelectMAP (8-bit) 100 MHz 800 Mbps
SelectMAP (16-bit) 100 MHz 1600 Mbps
SelectMAP (32-bit) 100 MHz 3200 Mbps

solution for Xilinx FPGAs. However, in order to reap the full benefits of SelectMAP, data must

be supplied to the interface quickly enough to keep up with the higher transfer rates and provide

a continuous stream of data. It is also not commonly implemented on development boards due

to the number of pins required to include it on a PCB and the absence of the additional test and

debugging capability that JTAG offers. This means that it is often necessary to design a custom

PCB to use the SelectMAP interface in an FPGA system.

2.4 Configuration Management Examples

Access to configuration memory is essential for SRAM-based FPGAs because they must

be programmed at startup before they can perform their assigned functions. However, program-

ming an FPGA is not the only operation that requires configuration memory access. This section

discusses examples of configuration management operations that go beyond just programming an

FPGA device with configuration data. It also describes several specific applications in which these

operations are used. Finally, several existing configuration management solutions are discussed.
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2.4.1 Configuration Management Operations

One common configuration management operation is partial reconfiguration. Partial recon-

figuration refers to a design technique in which certain regions of an FPGA device are designed

to be reprogrammed at runtime to perform different functions without reprogramming the entire

device [14]. This can be used to quickly swap out hardware accelerators during operation or make

modifications to algorithms. To do this, special commands, along with the new configuration data,

must be sent to the configuration module of the FPGA. The faster these commands can be sent, the

less downtime a system will have when switching between configurations.

Memory verification and scrubbing are also common runtime configuration management

applications. Readback verification involves reading the CRAM contents and checking them

against a golden copy to ensure that the design running on the FPGA matches the expected de-

sign [10]. Scrubbing is a related operation which involves actually modifying the CRAM contents

so that they match the golden copy [15]. This can be done by doing a readback verification and

fixing the parts of memory that do not match (readback scrubbing), or simply by writing the golden

data to the device at fixed intervals to ensure that any discrepancies are fixed (blind scrubbing).

Fault injection is a common technique that can be used to evaluate the reliability of an

FPGA system. It is the process of manually changing bits in CRAM to simulate SEUs [16]. In

general, a fault injection algorithm will flip bits in CRAM sequentially or randomly, wait a fixed

amount of time for the error to propagate, and then check if the design failed. This can produce

meaningful data, but it can be a very slow process. FPGAs contain millions of CRAM cells, so

an exhaustive fault injection campaign can take weeks depending on the error propagation delay

between injections. When a design fails, the FPGA must also be reprogrammed. Because this

process is repeated so many times, even a relatively small reduction of the time it takes to inject

faults and program the device can result in drastically reduced overall test times.

2.4.2 Applications

Aside from fault injection, the primary method for evaluating the reliability of FPGA de-

signs when exposed to radiation is by actually running experiments in radiation testing facilities.

This involves placing FPGAs in the path of a radiation beam and observing the effects [17]. Re-
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searchers at BYU have conducted many such tests with various collaborators [18] [19] [20]. It is

possible to evaluate reliability metrics such as the Mean Time To Failure (MTTF) without using

advanced configuration management at these tests by checking the actual outputs of the FPGA

design against the expected outputs to determine if a failure has occurred. However, this does not

provide any insight into how or why a design actually failed. To answer these questions, a more

accurate picture of the state of the device is necessary. To obtain this, a configuration management

device can be used to read the CRAM of the FPGA under test and check for SEUs as they occur.

These snapshots of the state of the device can help to make sense of the data collected during a

test. Scrubbing is also a useful configuration management operation during tests to prevent damage

to the device and to see how the introduction of a repair mechanism affects the MTTF and other

metrics.

The BYU TURTLE and TORTOISE projects are another example of an application that re-

quires high-performance configuration management. The primary goal of this project is to provide

a framework for validating FPGA soft error mitigation techniques such as Triple Modular Redun-

dancy (TMR) using fault injection. The system consists of two FPGAs that are connected in such

a way that they can monitor each other’s status and detect errors as they occur. The TURTLE does

this through a custom FMC board that connects two stock FPGA development boards together,

while the TORTOISE is a custom made PCB with two FPGAs on the same board. In both cases,

the two FPGAs compare outputs as they operate in lockstep to detect errors that have occurred in

one or both of the devices. One of the devices is unmodified and acts as the golden output, while

the second FPGA is injected with faults to simulate SEUs. In this manner, the reliability of the

design can be characterized with very accurate error detection. However, the process of injecting

faults, correcting them, and reprogramming the FPGA when a failure is detected is very time con-

suming as mentioned previously. In order for this system to produce results in a reasonable amount

of time, the configuration manager must be as efficient as possible.

2.4.3 Configuration Management Solutions

As stated previously, the goal of the work presented in this thesis is to provide an external,

general purpose configuration manager capable of efficient, high speed data transfers. Many of the

solutions described here are either based on internal configuration interfaces or are application-
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specific. However, the techniques employed in them are worth noting before moving on to our

implementation.

There are several configuration management solutions that have been developed specifi-

cally for partial reconfiguration. All of these use internal configuration interfaces such as the In-

ternal Configuration Access Port (ICAP) and Processor Configuration Access Port (PCAP). Both

of these interfaces operate with a 32 bit data bus, similar to SelectMAP in 32-bit mode. The Fast

Reconfiguration Manager (FaRM) tool described in [21] uses DMA to feed data to a FIFO which

then transfers the data to the configuration module using the ICAP interface. With this architec-

ture, they are able to achieve the maximum possible ICAP data rate of 6400 Mbps when writing

to the configuration module by overclocking the ICAP module at 200 MHz. The system described

in [22] is similar to FaRM but uses the PCAP interface with DMA instead of the ICAP. They are

able to achieve a data rate of 3056 Mbps when writing to the configuration module. The speed of

these systems is very impressive and the use of DMA to feed high-speed configuration interfaces

is promising.

There are also many systems designed specifically for scrubbing and fault injection applica-

tions. The system described in [23] successfully implements a scrubber using the ICAP interface.

They also mention the possibility of using the SelectMAP interface rather than the ICAP, but they

do not explore this option in any of their experiments. A scrubber that uses the PCAP is described

in [24]. This system is capable of several different scrubbing modes, including a novel technique

which uses the built-in scrubber of Xilinx 7 series devices as well as additional custom logic. An-

other system described in [15] uses the JTAG interface to implement an external scrubber. The

main logic of the scrubber operates on a processor that is connected to an FPGA programmed with

a JTAG controller. They are able to achieve a maximum clock rate of 25 MHz.

Each of the systems described above is designed with one specific application in mind and

thus lacks the programmability we are looking for in a configuration management solution. Xilinx

provides its own programmable JTAG configuration management tools which can be controlled

using the TCL scripting language [25]. However, they are still not easily programmable with cus-

tom JTAG sequences, relying more on predefined sequences which are sometimes obscured from

the user. There also does not appear to be any device on the market or presented in the literature

which is capable of providing programmable configuration management using SelectMAP.
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The system presented in this thesis is an extension of the JTAG Configuration Manager de-

scribed in [5]. This was developed at BYU as a programmable configuration management solution

that could be used in a variety of situations. The details of this system are covered in the next

chapter before discussing the new system presented in this thesis.

2.5 Summary

This chapter has motivated the need for high-speed configuration memory access as well

as providing an overview of configuration interfaces available on Xilinx FPGAs. Related work

and existing solutions that have influenced this work have also been discussed. The system de-

scribed in the remainder of this work is designed primarily to utilize the full potential of the JTAG

and SelectMAP interfaces for high-speed configuration management in a flexible, programmable

environment. The following chapters will describe the details of this system.
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CHAPTER 3. JTAG CONFIGURATION MANAGER

The JTAG Configuration Manager (JCM) was developed as a high-speed programmable

configuration management solution to meet the needs of our research activities at BYU. It has

since become an essential tool in our radiation testing and fault injection work and has also been

used at several other companies and universities. The original JCM was largely developed by

Ammon Gruwell and is described in [5] and [12].

Figure 3.1 shows the JCM connected to an UltraScale+ MPSoC development board via

JTAG. The JCM system consists of two main hardware components. The first is a custom breakout

board that provides the JTAG and SelectMAP I/O connections necessary to connect to Xilinx FP-

GAs. The second is a MicroZed development board which includes a ZYNQ 7010 System on Chip

(SoC). This SoC contains a hard processor as well as an FPGA, referred to as the Programmable

Logic (PL), which is programmed with hardware IP blocks accessible by the processor. A basic

block diagram of the system implemented on the ZYNQ SoC is shown in Figure 3.2. The JTAG

and SelectMAP modules in the diagram are IP blocks designed to generate the signals necessary

to send and receive data via their respective interfaces. The processor interacts with these modules

to handle all communication between the JCM and slave devices.

The ZYNQ processor in the JCM system runs a customized Linux kernel. The Linux

environment makes interacting with the JCM easier than a simple bare metal implementation by

providing OS functionality like file I/O and Secure Shell (SSH). A large software library that takes

care of all interactions with the JCM hardware modules implemented on the PL also makes it

easier to modify configuration management functions on the fly during radiation tests or other

experiments.

For a deeper look at the details of the JCM JTAG implementation, see Ammon Gruwell’s

thesis [12]. The focus of this chapter is not to reiterate all of the details of the JCM that have

already been published. Instead, this chapter will cover the SelectMAP module that has been
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Figure 3.1: JTAG Configuration Manager Connected to UltraScale+ MPSoC

Figure 3.2: JCM System Architecture

added to the JCM since the publication of [12]. The performance of both the JTAG and SelectMAP

implementations of the JCM will also be analyzed as well as some specific aspects of the JCM’s

design that limit its performance. These limitations of the JCM are what prompted the work

described in the subsequent chapters of this thesis.

3.1 SelectMAP Hardware Controller

In order to add SelectMAP functionality to the JCM, an HDL module was created as a

hardware controller for all of the interface’s signals1. This module is very similar to the JTAG

1Please refer to Chapter 2.3.2 for a detailed look at the signals and basic operation of the SelectMAP interface.
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Figure 3.3: SelectMAP Module Block Diagram

hardware controller that is already present in the JCM. A block diagram of the SelectMAP hard-

ware controller is shown in Figure 3.3.

This module is tasked with generating the CCLK, CSI, and RDWR signals as well as pro-

viding read and write access to the slave device using an 8-, 16-, or 32-bit data bus. The SelectMAP

module is connected to the Zynq processor as a peripheral via the AXI4-Lite Interface. The pro-

cessor can use this interface to read and write the software-accessible registers shown on the left

side of the diagram and control the hardware module. A state machine in the module is responsi-

ble for handling all of the SelectMAP I/O signals necessary to send or receive data from the slave.

Data that is transferred to and from the slave device is buffered in the read and write FIFOs within

the hardware module. The SelectMAP I/O signals are routed to the JCM’s custom breakout board.

The remainder of this section will describe the details of the registers that are used to interact with

the module, the state machine that is responsible for generating and capturing SelectMAP signals,

and the software that interacts with the module.
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Table 3.1: SelectMAP Module Registers

Register Description Offset
Status Read to obtain information about the state of the hardware module 0x0
Read FIFO Read to retrieve data that has been received from the slave via SelectMAP 0x4
Write FIFO Written with data to be sent to the slave via SelectMAP 0x18
Control Written to specify various options and commands (see Table 3.2) 0x1C

Table 3.2: SelectMAP Module Control Register

Name Bit Index Description

Transfer Count [24:0]
This range specifies the number of 32-bit words to be transferred
during this transaction.

Skip Read Wait 25

When set, this bit indicates that the three cycle waiting period
before data returning from the slave is valid should be skipped.
This is set when the length of a read transfer is larger than the
FIFO depth and must be split into multiple transactions.

Config Hold 26
When set, the controller will keep CSI asserted for several
clock cycles after the last word of data has been transferred.
This is only necessary when programming the FPGA [10].

Hold CS 27

When set, the controller will keep CSI asserted until the next
transaction has begun. This is set when the length of a read or
write transfer is larger than the FIFO depth and must be split
into multiple transactions.

Initiate Transfer 28 This bit indicates that a transfer should be initiated.
Bit Width 16 29 When set, the controller will use a 16-bit data bus.

Bit Width 32 30

When set, the controller will use a 32-bit data bus.
Note: If this is set and Bit Width 16 is set, the controller will
operate in 32-bit mode. If neither bit is set, the controller will
operate in 8-bit mode.

Read/Write 31
This bit specifies whether the current transfer is a read or a write.
0: Read Transfer
1: Write Transfer

3.1.1 Registers

The registers of the SelectMAP module are shown in Table 3.1. There are two software-

accessible registers that connect directly to the read and write FIFOs within the SelectMAP mod-

ule. One of these registers is written with data to be sent to the slave device (Write FIFO), and the

other can be read to retrieve data that has been received from the slave (Read FIFO). Both of these

FIFOs have a depth of 1024 32-bit words.
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Figure 3.4: SelectMAP State Diagram

The control register in the SelectMAP module is written every time a transfer is initiated.

The bits of this control register and their associated functions are shown in Table 3.2. The way that

these bits affect the operation of the state machine will be described further in Section 3.1.2.

Finally, a read-only status register provides information about the state of the SelectMAP

module. The most important bit, at index 0, indicates whether the SelectMAP controller is cur-

rently busy. The remaining four bits are tied to various FIFO flags for debugging purposes, but are

unused during normal operation.

3.1.2 State Machine

This section will describe the hardware state machine that is responsible for properly gen-

erating and capturing the signals of the SelectMAP interface. A basic diagram of the SelectMAP

module’s state machine is shown in Figure 3.4. The timing diagram of a SelectMAP write opera-

tion shown previously in Figure 2.2 and the read operation shown in Figure 3.5 will also be helpful

when trying to understand the operation of the state machine.
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Figure 3.5: SelectMAP Read Operation

The state machine starts in the idle state and remains there until the start bit in the control

register is set. In this state, the hardware controller does not interact with the SelectMAP signals.

Once the control register has been written with the start command and other options, the state

machine moves through three states: RDWR, First Low Clock, and First High Clock. The purpose

of these states is to change the RDWR signal to prepare for the transfer without triggering an

ABORT sequence. The RDWR signal is changed in the RDWR state to indicate to the slave

whether the transfer is a read or write. The clock is then held low in the First Low Clock state and

then held high in the First High Clock state so the slave device can latch in the new RDWR signal

before CSI is asserted.

At this point, the state machine will alternate between the Low Clock and High Clock

states. As the names suggest, the CCLK input to the SelectMAP interface is driven low in Low

Clock, and high in the High Clock state. This means that the CCLK signal provided to the slave

device operates at half the frequency of the clock input to the SelectMAP module on the JCM2.

During a write transfer, the next data to be transferred to the slave device is driven onto the

data pins during the Low Clock state. During the High Clock state, the data to be written to the

slave is still driven on the data pins. This data is held in a FIFO of 32-bit words, but the SelectMAP

controller must be able to operate in 8-, 16-, and 32-bit mode. This means that it may take up to

four clock cycles to transfer all 32 bits of data retrieved from the FIFO. If the next word of write

data from the FIFO is required for the next clock cycle (meaning that the current word has finished

transferring), the read enable signal of the FIFO is also asserted during this state.

2It is possible to use the SelectMAP interface with a free-running clock rather than a controlled clock, but this has
not yet been explored.
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In the case of a read transfer, no action is taken during the Low Clock state aside from

lowering the CCLK signal. During the High Clock state, the values of the data pins are sampled

on the rising clock edge and shifted into a 32-bit register. Once this register is full (every cycle

in 32-bit mode, every four cycles in 8-bit mode), its value is stored in the Read FIFO. It is also

important to note that the data pins will not be sampled until three CCLK cycles after the CSI

signal has been asserted. This is in accordance with the specifications given in [10].

This process repeats until the transfer is complete. This is determined by a counter that is

initialized to the transfer count value specified in the control register and then decremented every

time a full 32-bit word has been transferred. Once it reaches zero, the transfer is complete. At this

point, the state machine diverges depending on whether or not the Config Hold bit of the control

register is set. If it is set, the state changes to Hold Low. It will then alternate between Hold Low

and Hold High four times while keeping CSI asserted before moving to the Terminate state. If the

Config Hold bit is not set, the state machine will move straight from High Clock to Terminate.

In the Terminate state, the Hold CS bit in the control register is checked. If it is high, this

means that the current transfer is part of a larger transfer so CSI should be held high until the next

transfer begins. The state machine moves to Idle Burst where it keeps CSI asserted and waits for

another transfer to begin. If Hold CS is low, the state machine deasserts CSI and moves to the

Last Low Clock state. This state, along with Last High Clock, provide one last CCLK pulse before

returning to Idle so the slave can latch the deasserted CSI value.

3.1.3 Software

The object-oriented structure of the JCM software is organized so that there are several lay-

ers of abstraction between high-level functions, such as reading a particular configuration register

or configuring the FPGA with a bitstream, and the direct interactions with hardware modules in

the PL. These layers are shown in Figure 3.6. This structure made it relatively simple to replace

the JTAG-specific code with SelectMAP code while retaining the high-level operations available

in the JCM software.

The top two levels of the JCM software remain unchanged with the introduction of Se-

lectMAP. The application level contains code for performing high-level operations such as scrub-

bing algorithms, fault injection, and programming an FPGA device. Below that is the device level,
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Figure 3.6: JCM Software Layers

which implements low-level configuration operations such as reading and writing configuration

memory and registers. This mostly entails assembling sequences of configuration commands that

are then passed to the configuration interface level of software so they can actually be sent to the

slave device.

The configuration interface level is the highest level in the software that needed modifi-

cation with the introduction of SelectMAP. To make the SelectMAP and JTAG interfaces inter-

changeable from the perspective of the higher-level code, an abstract class is used to encapsulate

the basic operations of a configuration interface like reads and writes. Separate configuration in-

terface classes for JTAG and SelectMAP which implement those basic functions are then derived

from this abstract base class. The high-level software only interacts with objects declared as the

abstract base class rather than a JTAG or SelectMAP configuration interface object. In this way, the

high-level software functions do not need any knowledge of the specific interface they are interact-

ing with. This means that the same high-level code, such as scrubbing algorithms or fault injection

routines, can function properly using JTAG and SelectMAP interchangeably without modification.
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Table 3.3: SelectMAP Read ID Code Command Sequence

Configuration Instruction Description
0xFFFFFFFF Dummy word
0x000000BB Bus width auto detect, word 1
0x11220044 Bus width auto detect, word 2
0xFFFFFFFF Dummy word
0xAA995566 Sync word
0x20000000 NOOP
0x28018001 Read ID code register
0x20000000 NOOP

0xXXXXXXXX ID code returned from device
0x30008001 Write CMD register
0x0000000D DESYNC command
0x20000000 NOOP
0x20000000 NOOP

One difference between the JTAG and SelectMAP configuration interface classes is the

sequences of configuration commands that are written to the slave FPGA’s configuration module.

However, the differences are minor so the only change is that the SelectMAP configuration inter-

face class inserts additional configuration commands before and after the sequence of configuration

commands specified by the higher-level code.

Table 3.3 shows the sequence of commands necessary to read the ID code register of a

Xilinx FPGA. When using JTAG to connect to the FPGA configuration, only the commands in the

white cells of the table are needed. When using SelectMAP, the commands in the blue cells must

be sent in addition to the commands in the white cells. These additional commands are all taken

care of within the SelectMAP configuration interface class so the same sequence of commands

can be passed to the JTAG and SelectMAP configuration interface classes without modification.

The dummy words are used to flush the packet buffer as specified in [10]. The two bus width auto

detect words are sent so the FPGA can determine if the SelectMAP interface is operating in 8-, 16-,

or 32-bit mode. At the end of the sequence, the CMD register must be written with a DESYNC

command so the SelectMAP interface will release control of the configuration. Finally, two NOOP

instructions are sent to flush the packet buffer and let the DESYNC command take effect.

The firmware level of the JCM software is also modified to include a class that interacts

with the SelectMAP hardware module directly. The SelectMAP configuration interface class con-
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Figure 3.7: JCM Software: SelectMAP Write Flowchart

tains a pointer to an object of this class. The firmware level of the SelectMAP software uses

memory-mapped I/O to interact with the registers in the SelectMAP hardware module. This in-

cludes interacting with the read and write FIFOs in the module. It also handles longer transfers

that exceed the depth of the hardware FIFOs, meaning that multiple transfers are necessary. The

flow of the write and read functions is shown in Figures 3.7 and 3.8 respectively.

The write function begins by filling the Write FIFO with data to be sent to the slave via

SelectMAP. Then the control register is written to initiate the transfer. After this, the software

polls the status register to see if the hardware is still busy with the transfer. Once the hardware is

no longer busy with the transfer, the function checks to see if there are still words remaining in the

transfer. If so, it fills the FIFO again and repeats the process. If not, it returns.

The read function begins by writing the control register to initiate the read transfer. Then

it polls the status register just like in the write function to see if the hardware has finished reading

yet. Once the transfer has finished in hardware, the software reads the data from the hardware

Read FIFO and saves it in memory. If there are still more words to be transferred, another transfer

is initiated and the process is repeated. Once the full transfer is complete, the function returns a

pointer to the data that has been retrieved from the Read FIFO.

This concludes the description of the SelectMAP functionality of the JCM. The following

sections will examine the performance of both the JTAG and SelectMAP interfaces of the JCM.
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Figure 3.8: JCM Software: SelectMAP Read Flowchart

3.2 Performance

The JCM is already a useful tool that has been deployed at many radiation tests and has

also been used to gather valuable fault injection data. However, it has the potential to provide even

faster and more efficient configuration management. This section will first define metrics that will

be used throughout the rest of the thesis to quantify the performance of the JCM. Then some of

the limitations of the JCM’s JTAG and SelectMAP implementations will be described along with

performance data that highlights the effects of these limitations. Note that all of the performance

data presented in this section pertains only to the JCM as it was prior to the work presented in this

thesis. Performance data of the enhanced system will be discussed in Chapter 6.

3.2.1 Metrics

There are two main performance metrics that will be used to characterize JCM perfor-

mance: data rate and processor utilization. The data rate, or the rate at which data is transferred

between master and slave devices, will be expressed in Megabits per second (Mbps). This is es-
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sential to measure because fast configuration management is the primary goal of the JCM and the

work in this thesis. Data rate measurements will be obtained by measuring the amount of time it

takes to transfer a large amount of data (800 Mb for JTAG, 4,000 Mb for SelectMAP) between the

JCM and a slave device. Using a large amount of data is important to ensure that the overhead of

the code used to measure the elapsed time does not significantly influence the measured data rate.

The data rate is linearly related to the frequency of the clock provided to the configuration

interface. The JTAG interface on Xilinx devices has a maximum potential frequency of 66 MHz

and SelectMAP has a maximum of 100 MHz as shown in Table 2.3. Unfortunately, these frequen-

cies cannot be provided by the JCM firmware when implemented on the ZYNQ 7010 part. The

maximum clock speed that can be provided to the hardware controller modules by the ZYNQ 7010

while still meeting timing requirements is 100 MHz. Because the clock supplied to the modules is

divided by two before being passed to the slave device, 50 Mhz will be the upper frequency limit

in all of the data presented in this thesis. It might be possible to increase this to 100 MHz by using

a free running clock in the configuration interfaces rather than generating the clock in the JTAG or

SelectMAP state machines, but this has not yet been explored.

The second performance metric is processor utilization. This is defined as the percentage

of total execution time during which a process is actively consuming processor resources during

a JCM data transfer, as opposed to sleeping or waiting for resources to become available. This

percentage is obtained by dividing the CPU time of a process (time during which the process

is consuming processor resources) by the total execution time. Using Linux, the total execution

time can be obtained using get time of day() and the CPU time can be obtained from the clock()

function. Processor utilization is an important metric to consider because if the utilization is too

high and the JCM software hogs the processor, the system as a whole can take a performance hit

as important OS processes are forced to wait or preempt user processes at unpredictable times. It

also limits the number of user processes that can be active at a time.

3.2.2 Performance

The data rates when using the JCM to write and read data to and from a slave device

are shown in Figure 3.9. The percentages above the JCM read and write data rate bars in the

graph represent the percentage of the maximum potential data rate that is achieved. Notice that
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Figure 3.9: JTAG Data Rate Comparison

at low clock speeds, the percentage is close to 100% for write operations. However, as the clock

speed increases, the percentage drops dramatically until it is almost have of the maximum potential

for read operations and only 67% for write operations. This exposes some serious performance

bottlenecks in the design that will be discussed in the next section.

The SelectMAP data rates are shown in Table 3.4. The write and read data rates are prac-

tically identical for all clock rates, so only the write data rate is shown here. The same trends that

were observed in the JTAG performance are present here as the percentage of the maximum data

rate achieved drops dramatically as the clock speed increases. However, in the case of SelectMAP

the dropoff starts at slower clock speeds and is even more dramatic. The upper limit of the data

rate for any SelectMAP bitwidth and clock speed combination is 99.85 Mbps with a 50 MHz clock

and 32-bit data bus.

The measured processor utilization of the JCM software using JTAG or any SelectMAP

configuration at any clock speed is greater than 99%. This means that while the JCM is in the

middle of a transfer, there are effectively zero processor resources available to any other processes
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Table 3.4: SelectMAP Data Rates

Clock Speed 10 MHz 25 MHz 50 MHz

8-Bit SelectMAP
Maximum Data Rate 80 Mbps 200 Mbps 400 Mbps
Actual Data Rate 45.67 Mbps 69.47 Mbps 84.1 Mbps
Percentage of Maximum 57.1% 34.74% 21.03%

16-Bit SelectMAP
Maximum Data Rate 160 Mbps 400 Mbps 800 Mbps
Actual Data Rate 63.89 Mbps 84.1 Mbps 94.0 Mbps
Percentage of Maximum 39.93% 21.03% 11.75%

32-Bit SelectMAP
Maximum Data Rate 320 Mbps 800 Mbps 1600 Mbps
Actual Data Rate 79.85 Mbps 93.97 Mbps 99.85 Mbps
Percentage of Maximum 24.95% 11.75% 6.24%

in the system. This high utilization of processor resources can starve essential kernel processes,

causing them to interrupt the user process for longer periods of time. We have observed this

behaviour during radiation tests when a JCM is used to scrub configuration memory continuously

for a long time. The time between scrub cycles remains relatively constant, but occasionally the

kernel preempts the scrubbing program and the scrub cycle time increases dramatically.

3.2.3 Limitations and Proposed Solutions

Three main performance limitations of the JCM and proposed solutions to these limitations

will be described in this subsection. The first limitation applies only to the JTAG interface, but the

second and third limitations are common to both the JTAG and SelectMAP interfaces.

The first limitation has to do with the design of the JTAG module’s state machine. Cur-

rently, the length of a JTAG burst transfer is determined by the number of words that have been

written to the Write FIFO in the JTAG module that contains data to be written to the slave. The

module will only continue to transfer data between master and slave if that FIFO is not empty. This

works well for writing data to the slave, but it slows down burst read operations because the write

FIFO must be filled before the read operation can begin. Sometimes this is necessary because the

data sent to the slave during a read transfer is used in some way. However, in most cases where

large amounts of data are read from a slave device, the values sent to the slave during the transfer

are not used at all. This means that the processor must move twice as much data between mem-

ory and the hardware modules as is actually necessary for most read operations. The difference
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between the data rate for JTAG read and write operations can be seen in Figure 3.9. Notice that

at high clock frequencies, the difference in data rates for write operations and read operations is

significant. The gap between the read and write data rates widens as the clock speed increases

because at low clock speeds, the execution time is dominated by the time it takes to actually send

data over JTAG from the hardware module. This makes the effect of the extra transfers between

software and hardware less noticeable.

To get rid of this issue, there needs to be a way to specify the length of a read transfer

without filling the Write FIFO. This will effectively cut the number of transfers between hardware

and software in half.

It is also apparent in Figure 3.9 that the actual data rates for both read and write transfers

fall short of the maximum potential data rate at a given clock frequency. This is largely due to to the

exclusive use of the AXI4-Lite interface to transfer data between the processor and the hardware

modules. AXI4-Lite is a subset of the AXI4 interface that provides low-throughput, memory

mapped communication between hardware modules [26]. It is intended mainly for reading and

writing registers and it does not include any burst transfer functionality. Every time a single word

is transferred using AXI4-Lite, a handshake must take place on an address channel as well as a data

channel. When transferring large amounts of data between main memory and hardware modules,

such as when programming an FPGA with a bitstream, the overhead of these transfers is significant.

That overhead limits the achievable data rate of both the JTAG and SelectMAP modules.

To widen this bottleneck between main memory and the hardware modules, AXI4-Lite

needs to be replaced with a more efficient interface with less overhead. The solution implemented

in this thesis uses DMA and the AXI4-Stream interface to move data more efficiently. This solution

is described in more detail in the coming chapters.

The last problem comes from the way that the software checks to see if the hardware has

finished a transfer. The status register of both the JTAG and SelectMAP modules contains a bit that

indicates whether the module is currently busy transferring data. In software, this register is polled

until that bit is no longer asserted. For short transfers, this is not a significant issue. However, when

transferring large amounts of data, the processor can spend more time polling the status register

than doing meaningful work. The percentage of execution time that is spent polling during a 100

MB transfer (500 MB for SelectMAP) at various clock speeds is shown in Figure 3.10. For low
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Figure 3.10: Percentage of Execution Time Spent Polling for Different Interfaces and Clock Speeds

clock speeds using JTAG, the percentage of time polling can reach as high as 91%. As the clock

speed increases, the percentage goes down because the transfers happen more quickly in hardware

so the software does not have to wait as long.

To reduce the processor utilization, the costly polling practices used in the JCM software

must be replaced. The solution proposed in the coming chapters uses interrupts so that the user

process can sleep while waiting for the hardware to finish transferring data.

3.3 Summary

This chapter has described the state of the JCM prior to the enhancements that are the

main contributions of this thesis. It has introduced the SelectMAP hardware module as well as

important performance metrics that will be used to compare the base system with the improved

system described in the remainder of this thesis. The following chapters will describe this improved

system and evaluate its performance.
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CHAPTER 4. JCM DMA FIRMWARE

To address the limitations of the JCM described in the previous chapter, a new system

including Direct Memory Access (DMA) and interrupts has been developed. The architecture

described in this thesis addresses the three limitations of the JCM shown in 3.2.3. This chapter

presents the changes to the JCM firmware that solve these problems. In particular, interrupts

are used to reduce time spent polling and Direct Memory Access (DMA) capability is added to

improve data transfers within the system. A block diagram of the improved system is shown in

Figure 4.1. The different pieces of this system and the interfaces between them will be described

in this chapter. First, a brief overview of DMA is given. Second, specific details about how it

is implemented in the JCM will be presented. Third, the changes to the JCM firmware modules

to make them compatible with DMA and efficient interrupt usage are shown. Finally, several

implementations of systems with DMA capability and JCM IP are presented.

4.1 DMA Background

Accessing main memory takes a long time compared to most other operations performed

by a processor. Not only is it slow, but transferring large amounts of data from place to place

can tie up the processor as it executes memory access instructions one by one. DMA is a feature

in computing systems which provides access to main memory with minimal processor interaction.

This is achieved by adding a hardware module, often called a DMA engine, that can act as a master

of the bus which connects various blocks in a computing system. An example of such a system

is shown in Figure 4.2. With a DMA engine included on the bus, the processor needs only to

specify the details of the transfer to the DMA engine and then it is free to do other work while the

DMA engine moves the data between the specified locations. In most cases, the source address,

destination address, and number of bytes to transfer are the only parameters required to initiate a

DMA transfer. When the DMA transfer is complete, it generates an interrupt to alert the processor.
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Figure 4.1: JTAG + DMA System Block Diagram

Figure 4.2: Example DMA System

The purpose of the DMA engine in the new JCM system is to move data between the FIFOs

of the JTAG and SelectMAP modules and main memory with minimal processor intervention.

This will be faster and more efficient than the AXI4-Lite transfers previously used in the JCM

to perform the same function. This will ease the memory bottleneck observed in the previous
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chapter and should enable faster data rates. It will also reduce processor utilization because the

user process can go to sleep while the DMA transfer is in progress.

4.2 AXI DMA

The DMA implementation used in the JCM firmware is the AXI Direct Memory Access

IP included in Xilinx’s Vivado IP library. It can be configured to provide access to main memory

as well as hardware or firmware peripherals within the PL. It also includes two interrupt signals

which can be used to avoid polling while DMA transfers are taking place. One fires when a read

transfer has completed and the other fires when a write transfer has completed. These interrupt

lines can be connected to the interrupt controller of the ZYNQ’s hard processor so user processes

running on the JCM can sleep while DMA transfers occur.

There are five AXI interfaces of various kinds that are required to use the AXI DMA IP

to transfer data between main memory and hardware modules within the FPGA. An AXI4-Lite

interface is used to provide the processor with access to control registers within the module. Soft-

ware running on the processor can then write to these registers to set up DMA transfers. There are

two AXI4 interfaces that provide read and write access to main memory via the high performance

AXI slave interface on the ZYNQ processor. Finally, there are two AXI4-Stream interfaces that

provide read and write access to other IP within the PL. The following section will give a detailed

description of AXI4-Stream and why it is efficient for moving data between hardware modules in

the PL.

4.2.1 AXI4-Stream

The AXI4-Stream interface is a lightweight data transfer protocol designed for efficient

point to point burst transfers [26]. Data is only transferred in one direction and there is no address-

ing. This means that there is less overhead when initiating a transaction, but it is also less flexible

and requires two separate AXI4-Stream interfaces to achieve two-way communication. For the

JCM, this is an acceptable tradeoff because data only moves into the JTAG and SelectMAP hard-

ware modules via the Write FIFO and out via the Read FIFO. If reads and writes only ever occur
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Figure 4.3: AXI-4 Stream Transaction

Table 4.1: AXI DMA Registers

Register Description Offset

Source/Destination
The physical address of the source for a DMA write
or destination for a DMA read 0x18

Control
Control register which must be written with a start
command before a transfer can take place. 0x30

Transfer Length
Length in bytes of the current transfer. Writing this
register actually starts the transfer. 0x28

between the same two points, addressing is not necessary and point to point transfers are more

efficient.

A typical AXI4-Stream transaction is shown in Figure 4.3. Data is always transferred

from a master to a slave that share a common clock associated with their shared AXI4-Stream

interfaces. The slave asserts the ready signal when it is ready to receive data from the master. The

master asserts the valid signal once there is data ready to be transferred. At this point, every time

valid and ready are both asserted at a positive clock edge, a single word of data is transferred. At

the clock edge which occurs when the last word of data is to be transferred, the master must assert

the last signal. After this, the master lowers the valid signal until there is more data ready to be

transferred. Note that the slave is not allowed to wait for the valid signal before it asserts the ready

signal. The keep signal determines which bytes of the data bus are valid. In the case of the JCM,

all four bytes are valid on every data beat, so keep is always driven with 0xF by the master.
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4.2.2 Control

The AXI DMA module is controlled by writing to a small set of control registers that are

accessible to the processor through memory mapped I/O [27]. These are split into two sets of three

control registers: one for the DMA write channel, which handles transfers from main memory to

hardware modules, and three for the DMA read channel, which handles transfers in the opposite

direction. These registers are described in Table 4.1. The offset column in the table shows the value

that must be added to the base address of the read or write channel to calculate the address of the

register. The following list shows the necessary steps when beginning a DMA write transaction.

All registers mentioned in the list are write channel registers.

1. Write the physical address of data to be written to the source address register

2. Bitwise OR the current control register contents with the start mask value (0x1)

3. Write the transfer length register with the length in bytes of the data to be transferred

The steps to initiate a DMA read transfer are identical except that the read channel registers

are written instead of the write channel registers. This also means that the source address register

is now a destination address register. This register must be written with the physical address where

the data read through DMA is to be stored.

4.3 JTAG and SelectMAP Firmware Changes

This section will describe the changes made to existing JCM IP blocks to support DMA

access and interrupts.

4.3.1 JTAG And SelectMAP Modules

The new versions of the JCM JTAG and SelectMAP modules have AXI4-Stream master

and slave interfaces that connect to the interfaces on the AXI DMA module. These interfaces

replace the memory mapped register interface that was previously used to transfer data to and from

the FIFO within these modules. The slave interface on the JCM side which receives data from

main memory was very straightforward to implement. The ready signal is always asserted as long
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as the internal FIFO is not full. The write clock of the FIFO is connected to the clock associated

with the AXI4-Stream interface and the write enable signal of the FIFO is then tied to the logical

and of the ready and valid signals. This way, the module is always ready to receive data so long as

the FIFO has space available. The keep and last signals are not used in this application.

The master interface on the JCM modules is more involved due to the generation of the last

signal. The length of the transfer must be specified to the module in order to assert the last signal on

the correct clock cycle, so an additional control register was added. This register must be written

with the length of the DMA transfer before the AXI DMA module starts the transaction. A simple

state machine within the JCM modules keeps track of how many words have been transferred so

far and asserts the last signal along with the final word of data to be transferred.

The behavior of these modules has also changed to more fully take advantage of the higher

data transfer rates from memory that DMA provides. The previous JCM version breaks up a single

large transfer into a series of transfers that are small enough so that all the required data will fit

within the read and write FIFOs in the firmware modules. In the new system, the goal is instead

to keep the FIFOs full during a write or empty during a read so that the entire transfer can happen

without interruption. The following paragraphs refer to a write transaction where the write FIFO

must be kept full, but the same changes also apply to a read transaction and keeping the read FIFO

empty.

The main state machine for the JTAG and SelectMAP modules has been modified to re-

liably support continuous transfers. In the previous version, the JCM modules receive a start

command and then send data to the target device until the write FIFO is completely empty. Once

the write FIFO is empty, the module returns to an idle state. This means that if the write FIFO is

empty at any point in the transaction, the state machine will return to an idle state and the control-

ling software must write to the control register before it starts transferring data again. The goal for

the new version, as stated previously, is to have continuous transfers where the FIFO is not empty

until the end of the transaction. However, in the event that the FIFO is completely empty during a

write transaction, the state machine should pause until more data is available rather than exit to an

idle state.

The new state machine keeps track of the number of words transferred so far to determine

whether or not to exit to idle when the write FIFO is empty. If the write FIFO is empty and the
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number of words transferred is less than the total length of the transfer (as specified in a control

register), the state machine enters a pause state instead of exiting. This allows the transfer to

continue without rewriting the control registers.

This change also addresses the inefficiency in burst reads mentioned in Section 3.2.3. When

using the previous JCM firmware, the length of read operations is specified by writing the same

number of words to the write FIFO as you want to read. For large burst reads, this means that a

lot of time is spent sending unnecessary junk data to the write FIFO. By keeping track of transfer

length rather than depending solely on the write FIFO’s empty flag, read transactions can now take

place without writing any data to the write FIFO.

Keeping the write FIFO full also requires that the software knows when to fill the FIFO.

This is done by creating a new interrupt signal that is fired when the data in the write FIFO passes

below the halfway mark during a write transaction. This same interrupt line is also used when the

data in the read FIFO passes the halfway mark during a read. The way this interrupt is handled in

software will be detailed in Chapter 5.

4.4 Implementations

This section will describe several systems which take advantage of the DMA engine and

other additional features added to the JCM firmware.

4.4.1 JTAG Only

Figure 4.1 from the beginning of the chapter shows the block diagram of a basic system

which combines the AXI DMA module with the JCM JTAG module. The figure is simplified

slightly so that the interfaces between blocks are easier to follow. In the actual system, the AXI4-

Stream interface between the AXI DMA block and the JCM JTAG block is split into two separate

interfaces. This is because data can only flow in one direction when using a given AXI4-Stream

interface as noted previously in Section 4.3.1. Another difference between the figure and the actual

system is that the main memory and AXI DMA modules are not directly connected via AXI4, but

are connected through the processor’s high performance AXI4 slave port. The AXI DMA connects
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Figure 4.4: AXI4-Stream Interconnect In JTAG/SMAP + DMA System

to a high-performance AXI4 slave interface on the processor, which then provides access to main

memory.

There are three interrupts which must be connected to the processor in this system. Two are

from the AXI DMA, signaling when a read and write transfer have completed. The final interrupt

signal is from the JCM JTAG module, signaling when the internal write FIFO is half empty during

a write or the read FIFO is half full during a read. All three of these signals must be routed to

the processor and PL interrupts must be enabled when configuring the processing system block in

Vivado.

4.4.2 JTAG And SelectMAP

Adding support for a SelectMAP interface in addition to the JTAG interface is not as simple

as just inserting the SelectMAP module into the design. Because there are now two modules in the

system that must communicate with the AXI DMA module, there must also be a mechanism which

can redirect the AXI4-Stream data to the correct destination. The AXI4-Stream Interconnect IP is

used for this purpose.

This IP is used to connect one or more AXI4-Stream masters to one or more slaves. Figure

4.4 shows a simplified version of how this system works. The interconnect IP connects to the AXI

DMA IP and to both of the modules that will need to communicate with it. Depending on which

direction the data needs to move, the AXI DMA will connect on the master or slave side and the
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Figure 4.5: TORTOISE Board and SelectMAP Connector

JTAG and SelectMAP modules will connect on the side opposite the AXI DMA. Figure 4.4 shows

the case in which the AXI DMA is the master and the JTAG and SelectMAP modules are the

slaves, providing read access to memory using DMA. In order for the JCM modules to have both

write and read access to memory using DMA, there must be two of these interconnects: one for

each direction.

The AXI4-Stream Interconnect IP is controlled by writing software-accessible registers at

runtime. There is a register associated with every master interface that is connected to the IP. For

each master interface, its associated register must be written with either the index of the slave

interface that should be connected to the master interface, or with a constant that disables the

interface. After writing any of these registers, a commit command must be written to a control

register in the IP before the changes will take effect. The DMA kernel module, which will be

explained in Chapter 5, handles all of this to ensure that the AXI DMA is connected to the right

device at the right time.

The SelectMAP signals are routed to the accessory connector on the JCM breakout board.

From there, several options exist to connect the interface to the SelectMAP interface on the DUT.

Individual flying wires are a viable option, but also messy and error-prone. The TORTOISE board,

shown in Figure 4.5, was designed to connect directly to the accessory connector on the JCM to

provide SelectMAP access. This is an effective solution, but a board must be designed from the

ground up in order to take advantage of it. Connecting and disconnecting the two boards must also

be done very carefully to avoid bending the pins. With 88 total pins connected via the accessory
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Figure 4.6: Multi-JTAG Simplified Block Diagram

connector, this is actually quite difficult. In the future, an FPGA Mezzanine Card (FMC) connector

option will likely replace these initial solutions.

4.4.3 Multi-JTAG

With DMA and interrupts allowing user processes running on the JCM to periodically

sleep, processing resources are used more efficiently. This means that managing multiple JTAG

chains simultaneously using the same JCM is now much more feasible. The Multi-JTAG version

of the JCM firmware was created to make this possible. This version includes eight JCM JTAG

modules that are connected to one AXI DMA IP using the AXI4-Stream Interconnect in the same

manner that was described in Section 4.4.2. A simplified block diagram of the PL design that

implements the Multi-JTAG system is shown in Figure 4.6. The blocks in gray at the top are all
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Figure 4.7: Multi-JTAG Expansion Card

connected via high performance AXI4. The two directions of AXI4-Stream interfaces are shown

in orange and light blue along with the AXI4-Stream Interconnect blocks that allow the AXI DMA

to switch between connections. Finally, the JTAG hardware modules are shown in dark blue along

the bottom. The AXI4-Lite connection between the processor and these modules in present in the

actual design, but absent from the figure to make it more readable.

The JCM breakout board has also been modified to enable the simultaneous use of eight

JTAG connectors. There are two JTAG connectors natively on the JCM breakout board. In addition

to these, an expansion card that connects to the expansion slot on the breakout board provides six

more connectors. The expansion card is shown in Figure 4.7. By enabling a single JCM to manage

eight JTAG chains simultaneously, hardware resources can be used much more effectively. The

performance of this system will be shown in Chapter 6.

This chapter has described the changes that have been made to the JCM firmware to add

support for DMA and interrupts. While no single piece of the system is particularly complicated

on its own, assembling everything into a working system where different blocks interact correctly

with each other is a formidable task. The way the software interacts with the firmware is yet

another vital piece of this system that will be described in the coming chapter.

41



www.manaraa.com

CHAPTER 5. JCM DMA SOFTWARE

This chapter describes the changes made to the JCM software to support the new DMA and

interrupt features added in the firmware. The majority of these changes take place within the Linux

kernel used on the JCM. Specifically, kernel modules are added to the Linux kernel on the JCM

to serve as interfaces between software and hardware. These modules are referred to as drivers.

This chapter justifies the need for kernel changes by describing the differences between kernel

space and user space. Then, the mechanisms used to modify the kernel, namely the device tree

and kernel modules, are described. Finally, the specific kernel modules developed for the JCM are

discussed in detail.

5.1 Kernel Space

Kernel space refers to the region of memory where the actual Linux kernel code operates

and user space refers to the region of memory where user programs operate [28]. However, the

region of memory is not the only difference between the two. Kernel space and user space code

also executes with different levels of privilege on the processor. These privilege levels, referred

to as rings, determine what functionality is available. Although more than two rings exist in most

processors, only the outermost (least privileged) and innermost (most privileged) rings are used in

Unix systems. User space code operates in the outermost ring and kernel space code operates in

the innermost ring. This means that kernel space essentially has no restrictions on operations it can

perform and user space is more limited.

It is important to note that the lack of restrictions in kernel space does not necessarily

make programming easier. Writing code to run in kernel space can be difficult because a lot

of functionality designed for user space, such as C standard library functions, is unavailable in

kernel space. Debugging is particularly difficult because the safety net of the kernel is taken away.

Errors that occur in kernel space can easily crash the entire system and require a reboot to recover.
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Standard debugging tools like GDB also cannot be used in the same way when debugging kernel

code. This makes for a very steep learning curve when trying to write kernel code for the first time.

With all of these drawbacks, it is generally wise to look for solutions in user space before jumping

to kernel space. However, for this system there is ample reason to write kernel code because of the

inclusion of DMA and interrupts.

Using a DMA engine requires manipulation of physical memory, which is handled exclu-

sively in kernel space. User space programs are confined to processes that are managed by the

kernel to ensure that they do not interfere with each other. Each process has a virtual address space

that is mapped to physical memory by memory management code in the kernel. This type of mem-

ory management is problematic for a user space program that wants to use DMA because the DMA

controller in hardware only uses physical addresses and has no knowledge of the virtual address

space used in a process. Also, memory that appears to be contiguous in the virtual address space

of a user process could actually be spread out through different parts of physical memory. This

is a problem for standard1 DMA controllers that depend on contiguous chunks of memory when

they transfer multiple bytes of data. Due to these obstacles, allocating DMA buffers and handling

DMA transfers is best suited for kernel space code.

In addition to the management of physical memory, registering and handling interrupts also

occurs within kernel space. The new JCM firmware generates several different interrupts that can

be used to utilize processor resources more effectively if handled properly. Before this can happen,

the interrupts must be registered with the kernel and associated with an Interrupt Service Routine

(ISR) that will execute every time the interrupt occurs.

Considering all of this, writing kernel code to handle the new DMA and interrupt fea-

tures is essential for the new JCM system. This code is contained in kernel modules, which will

be explained in Section 5.3. Before developing the modules, however, the kernel needs to have

information about the device that it will be interacting with. This is done through the device tree.

1DMA controllers that feature a scatter-gather mode can deal with noncontiguous memory and efficiently transfer
data that is spread out through the physical address space, but it makes interacting with the DMA controller more
complicated and it is not necessary if there is a sufficient amount of contiguous physical memory available.
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/ { / / t h e r o o t node
an−empty−p r o p e r t y ;
a−c h i l d−node {

a r r a y−prop = <0x100 32>;
s t r i n g −prop = ” h e l l o , w or l d s ” ;

} ;
a n o t h e r−c h i l d−node {

b i n a r y−prop = [00102CAFE ] ;
s t r i n g − l i s t = ” yes ” , ” no ” , ” maybe ” ;

} ;
} ;

Figure 5.1: Device Tree Source Example

5.2 Device Tree

To interact properly with hardware devices, the kernel needs to know some fundamental

information about them. A device tree is a data structure used to convey this information to the

kernel by describing the hardware devices present in an embedded computing system [29]. The

kernel loads this data structure at boot time so that it can properly configure the kernel and load

device drivers as necessary. Desktop and server environments can avoid using this due to stan-

dardized firmware interfaces that can be probed at boot time so the system is aware of attached

hardware. However, the device tree is important for embedded systems because the type of hard-

ware available in the system can vary wildly from one system to another and is not as uniform as

hardware intended for use on desktops or servers. This is especially true in heterogeneous systems

involving CPUs and FPGAs because the FPGA can be reconfigured to contain a wide variety of

different hardware modules. The alternative to device trees is to hard code information about the

system into the kernel itself, which requires the kernel to be recompiled whenever the hardware

changes. Device trees can be changed much more easily, which enables more flexible systems.

A device tree is represented in a readable text format as a device tree source (.dts) file. A

simple example of a .dts file is shown in Figure 5.1. The .dts file contains a list of devices present in

the system that are organized into nodes. A single root node encompasses all of the other nodes in

the entire tree. Common child nodes of this root node include CPUs, memory, and programmable

logic. The leaf nodes that have no children represent actual devices present in the system.
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Each node in the device tree includes a list of properties which can contain different types

of data. These properties can specify memory address spaces for memory-mapped IO, interrupt

information, or any other information that the kernel needs to know about the device. Every node

also includes a string property with the compatible label. This is a unique identifier so the kernel

can determine what device is associated with that node.

The number of necessary properties in each node can be large, so creating an entire device

tree source file by hand is tedious and error prone. Fortunately, Xilinx’s Vivado design suite in-

cludes tools for generating device tree source files based on a hardware design. This can be done

by exporting the Vivado block design to the Software Development Kit (SDK) and creating a de-

vice tree project based on the exported files. Before the device tree can be used by the kernel, it

must be compiled into a device tree blob (.dtb) file using a device tree compiler. This compiler is

also available through Xilinx for use with Xilinx SoCs such as the ZYNQ 7010 used in the JCM.

A more specific walkthrough of the process of creating a usable device tree using Xilnix tools can

be found at [30].

The device tree nodes that have been added to the JCM’s device tree are shown in Figure

5.2. The auto-generated information that is not directly used by the kernel modules has been

omitted for the sake of space. From top to bottom, these nodes correspond to the AXI DMA IP

(including the read and write channels as separate nodes), the two AXI4-Stream Interconnects, the

JTAG module, and the SelectMAP module respectively. The additional seven JTAG modules used

in the Multi-JTAG implementation of the JCM hardware are also present, but not shown in this

figure.

This section has covered the basics of device trees as they are used in the Linux kernel and

the specific changes to the device tree in the new JCM system. The remainder of this chapter is

dedicated to Linux kernel modules and how they are used in the new system.

5.3 Kernel Modules

A kernel module is a piece of code that can be inserted into or removed from the kernel

on demand [28]. This means that code can be added to the kernel without recompiling the entire

kernel, making the kernel more flexible. In the case of the JCM, this is desirable because there are

several different hardware configurations used on the FPGA as described in the previous chapter.
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dma@40400000 {
c o m p a t i b l e = ” xlnx , ax i−dma−1 .00 . a ” ;
i n t e r r u p t −p a r e n t = <0x4>;
i n t e r r u p t s = <0x0 0x1d 0x4 0x0 0 x1e 0x4>;
r e g = <0x40400000 0x10000 >;

dma−channel@40400000 {
c o m p a t i b l e = ” xlnx , ax i−dma−mm2s−c h a n n e l ” ;
i n t e r r u p t s = <0x0 0x1d 0x4>;

} ;

dma−channel@40400030 {
c o m p a t i b l e = ” xlnx , ax i−dma−s2mm−c h a n n e l ” ;
i n t e r r u p t s = <0x0 0 x1e 0x4>;

} ;
} ;

ax i s swi t ch@43c10000 {
c o m p a t i b l e = ” xlnx , a x i s−swi t ch −1.1 ” ;
r e g = <0x43c10000 0x10000 >;

} ;

ax i s swi t ch@43c20000 {
c o m p a t i b l e = ” xlnx , a x i s−swi t ch −1.1 ” ;
r e g = <0x43c20000 0x10000 >;

} ;
j c m j t a g m o d u l e 0 : jcm j tag module@79c00000 {

c o m p a t i b l e = ” xlnx , jcm−j t a g−module−1.0−0” ;
i n t e r r u p t −p a r e n t = <0x4>;
i n t e r r u p t s = <0x0 0 x1f 0x4>;
r e g = <0x79c00000 0x10000 >;

} ;
jcm smap module@43c00000 {

c o m p a t i b l e = ” xlnx , jcm−smap−module−1.0 ” ;
i n t e r r u p t −p a r e n t = <0x4>;
i n t e r r u p t s = <0x0 0x20 0x4>;
r e g = <0x43c00000 0x10000 >;

} ;

Figure 5.2: JCM Device Tree Nodes

By implementing the software interfaces for the JCM hardware using modules, the set of interfaces

used in the kernel can be changed without recompiling the kernel and creating a new disk image.

Kernel modules can serve different purposes, but the modules developed for the new JCM

system are known as device drivers. These are modules that are specifically intended to provide

a software interface to hardware devices. When a device driver is inserted into the kernel, several
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things happen. First, an initialization function in the driver is called which registers the device

with the kernel. Then the initialization function calls a probe function defined in the driver that

probes the device tree for information about the device associated with the driver. This is where

the compatible property in the device tree comes into play. The probe function executes once for

each node in the device tree for which the compatible property matches a string in the match table2

defined in the driver. The probe function can then pull information such as address space and

interrupt numbers from the device tree for each device that the driver needs to interact with. After

the probe function has run for the last time, the initialization function can return and the driver is

now inserted into the kernel.

When a driver is inserted into the kernel, a device file is created in the kernel’s file system.

Software running in user space can then perform operations on this file using the Input/Output

Control (IOCTL) function. In the kernel module, the IOCTL function defines different operations

that can be performed on the hardware device and associates each operation with a unique number.

This function is called from user space using three parameters: a file descriptor of the associated

device file, the number of the IOCTL operation to execute, and a parameter of type long that can be

cast to whatever data type is needed to pass necessary information between user space and kernel

space.

5.4 JCM DMA Linux Drivers

There are three distinct device drivers that have been developed for the new JCM DMA

system: a DMA driver, JTAG driver, and SelectMAP driver. This section will describe each of

these drivers in detail, including how user space software interacts with them. The connectivity of

these drivers is shown in Figure 5.3 for the hardware system that includes a JTAG module and a

SelectMAP module. When the Multi-JTAG hardware is used, the SelectMAP driver is not loaded

and seven additional JTAG modules are loaded instead. The user space code interacts with the

JTAG and SelectMAP drivers solely through the IOCTL function. These drivers communicate

with the JTAG and SelectMAP firmware modules as well as the DMA driver in kernel space. The

DMA driver is never accessed from user space directly. When any of these drivers are loaded,

2The match table is an array of C structures which each contain a string member named ”compatible.” This member
is what is compared with the compatible properties of device tree nodes.
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Figure 5.3: User Space, Kernel Space, and Hardware Connections

they probe the device tree to obtain base addresses for the hardware modules involved in the driver

as well as any necessary interrupt numbers. The interrupts are then immediately registered with

associated ISRs. The specifics of these drivers are covered in the following subsections.

5.4.1 DMA Driver

The DMA driver is responsible for managing all DMA transfers in the system. To do this,

it needs to get the base addresses of the AXI DMA IP and the two AXI4-Stream Interconnect

modules from the device tree. It also needs to get the interrupt numbers for the read and write

channels of the AXI DMA IP. Finally, it allocates a contiguous buffer of one full page (4 KB) of

memory to use when transferring data via DMA. After all of the initial setup, the DMA driver

exports two functions that are accessible to the other drivers in kernel space: DMA read and DMA

write.
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Both of these functions are made atomic by using a semaphore. Only one device is allowed

to initiate a DMA transfer at a time because every DMA transfer must be preceeded by setting up

the AXI4-Stream Interconnects so the AXI DMA IP is connected to the correct firmware module.

This connection cannot be changed in the middle of a transfer or the data will be redirected. The

AXI DMA IP also only includes one read channel and one write channel, so multiple transfers

cannot happen simultaneously.

The DMA read function takes four parameters: a destination address, transfer length, de-

vice ID, and DMA control register address for the requesting device. The destination address is

used to copy data from the DMA buffer in kernel space to an array in user space so the data read

from the slave device can be used there. The transfer length specifies the length of the transfer

given in 32-bit words. The device ID is used to determine how to configure the AXI4-Stream In-

terconnects. Finally, the DMA control register address must be written with the transfer length as

described in the previous chapter.

The actual DMA read function is shown in Figure 5.4. First, the semaphore is obtained.

Then the AXI4-Stream interconnects are configured according to the device ID. The DMA control

register address is then written with the number of words to be transferred. Finally, the AXI DMA

control registers are written to initiate the transfer. The process which called the function is then

put to sleep until the interrupt indicating that the read transfer is complete has fired. Once the

process wakes up, it copies the data that was read from the buffer in kernel space to user space and

releases the semaphore.

The DMA write function is very similar and is shown in Figure 5.5. It first obtains the

semaphore, then configures the AXI4-Stream interconnects using a device ID passed to the func-

tion. It then copies the data to be written to the slave from user space into the buffer in the kernel.

The transfer is initiated and then the process goes to sleep until the interrupt signalling the end of

the transfer is received. Finally, the process wakes up, releases the semaphore, and returns.

These two functions are never accessed from user space. They are only called from other

parts of the kernel, namely the JTAG and SelectMAP drivers that oversee transactions between the

JCM and a slave device.
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i n t j cm dma read ( u32∗ d e s t a d d r , u32 t r a n s f e r l e n g t h , u32 d e v i d , u32
d m a c o n t r o l a d d r ) {

long r e t ;
/ / Ob ta in semaphore
i f ( d o w n i n t e r r u p t i b l e (&sem ) )

re turn −ERESTARTSYS ;
c o n n e c t a x i s t r e a m ( d e v i d ) ;
d m a r e a d r e a d y = 0 ; / / r e s e t t h e ready f l a g

/ / W r i t e dma c o n t r o l r e g i s t e r i n r e q u e s t i n g d e v i c e
∗ ( v o l a t i l e u32 ∗ ) ( d m a c o n t r o l a d d r ) = t r a n s f e r l e n g t h ;
/ / W r i t e t h e d e s t i n a t i o n a d d r e s s ( Ke rn e l Array )
∗ ( v o l a t i l e u32 ∗ ) ( dmaBaseAddress + DMA DEST ADDRESS OFFSET) = ( u32 )

physAddr ;
/ / S t a r t t h e DMA
∗ ( v o l a t i l e u32 ∗ ) ( dmaBaseAddress + DMA READ CONTROL OFFSET) = ∗ (

v o l a t i l e u32 ∗ ) ( dmaBaseAddress + DMA READ CONTROL OFFSET) |
DMA START MASK;

/ / W r i t e t h e Leng th o f t h e t r a n s f e r ( a c t u a l l y s t a r t s t r a n s f e r )
∗ ( v o l a t i l e u32 ∗ ) ( dmaBaseAddress + DMA READ TRANSFER LENGTH OFFSET) =

s i z e o f ( u32 ) ∗ t r a n s f e r l e n g t h ;

/ / Wait u n t i l t r a n s f e r i s c o m p l e t e
i f ( ! w a i t e v e n t i n t e r r u p t i b l e t i m e o u t ( wq , ( d m a r e a d r e a d y ! = 0 ) , HZ/ 1 0 ) )

p r i n t k ( ”DMA r e a d t i m e o u t ” ) ;

/ / T r a n s f e r da ta from k e r n e l a r r a y t o u s e r space
r e t = c o p y t o u s e r ( ( u32 ∗ ) d e s t a d d r , ( u32 ∗ ) ke rnArray , s i z e o f ( u32 ) ∗

t r a n s f e r l e n g t h ) ;
i f ( r e t < 0) {

p r i n t k ( ” E r r o r copy ing t o u s e r s p a c e i n dma read \n\ r ” ) ;
}
/ / R e l e a s e semaphore
up(&sem ) ;
re turn 0 ;

}
EXPORT SYMBOL( jcm dma read ) ;

Figure 5.4: DMA Read Function in DMA Driver

5.4.2 JTAG and SelectMAP Drivers

The JTAG and SelectMAP drivers perform the same operations with very few differences.

They are responsible for initiating and managing transfers in the JTAG and SelectMAP firmware

modules. They each define the same four IOCTL operations: write, read, register write, and

register read.
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i n t j c m d m a w r i t e ( u32∗ s r c a d d r , u32 t r a n s f e r l e n g t h , u32 d e v i d ) {
long r e t ;
/ / Ob ta in semaphore
i f ( d o w n i n t e r r u p t i b l e (&sem ) )

re turn −ERESTARTSYS ;
c o n n e c t a x i s t r e a m ( d e v i d ) ;
d m a w r i t e r e a d y = 0 ; / / r e s e t t h e ready f l a g

r e t = c o p y f r o m u s e r ( ( u32 ∗ ) ke rnArray , ( u32 ∗ ) s r c a d d r , s i z e o f ( u32 )
∗ t r a n s f e r l e n g t h ) ;

i f ( r e t < 0) {
p r i n t k ( ” E r r o r copy ing from u s e r s p a c e i n d m a w r i t e \n\ r ” ) ;

}
/ / I n i t i a t e DMA T r a n s f e r
/ / W r i t e t h e Source Addres s ( Ke rn e l Array )
∗ ( v o l a t i l e u32 ∗ ) ( dmaBaseAddress + DMA SOURCE ADDRESS OFFSET) = ( u32 )

physAddr ;
/ / S t a r t t h e DMA
∗ ( v o l a t i l e u32 ∗ ) ( dmaBaseAddress + DMA WRITE CONTROL OFFSET) = ∗ (

v o l a t i l e u32 ∗ ) ( dmaBaseAddress + DMA WRITE CONTROL OFFSET) |
DMA START MASK;

/ / W r i t e t h e Leng th o f t h e t r a n s f e r ( a c t u a l l y s t a r t s t r a n s f e r )
∗ ( v o l a t i l e u32 ∗ ) ( dmaBaseAddress + DMA WRITE TRANSFER LENGTH OFFSET)

= s i z e o f ( u32 ) ∗ t r a n s f e r l e n g t h ;

/ / Wait u n t i l t r a n s f e r i s c o m p l e t e
i f ( ! w a i t e v e n t i n t e r r u p t i b l e t i m e o u t ( wq , ( d m a w r i t e r e a d y ! = 0 ) , HZ/ 1 0 ) )

p r i n t k ( ”DMA w r i t e t i m e o u t ” ) ;
/ / R e l e a s e semaphore
up(&sem ) ;
re turn 0 ;

}
EXPORT SYMBOL( j c m d m a w r i t e ) ;

Figure 5.5: DMA Write Function in DMA Driver

The register read and write functions are exactly as one would expect. They read or write

a register in the address space of the hardware module associated with the driver. This is done by

making an IOCTL call in user space, passing in the appropriate IOCTL number for the operation,

and supplying a pointer to a struct containing an offset and a pointer to a 32-bit unsigned integer

as the third parameter. The offset is added to the base address obtained from the device tree to

form the address of the register. The pointer is used to obtain data to be written in the case of a

register write, or store data read from the register in the case of a register read. These functions
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whi le ( c o m p l e t e d l e n g t h < t o t a l t r a n s f e r ) {
/ / S e l e c t how many words t o t r a n s f e r
c u r r e n t t r a n s f e r = ( ( c o m p l e t e d l e n g t h + DMA WRITE TRANSFER LENGTH) >

t o t a l t r a n s f e r ) ? r e m a i n d e r w o r d s : DMA TRANSFER LENGTH;

/ / W r i t e t h e n e x t s e t o f words and i n c r e m e n t a d d r e s s and c o u n t e r
/ / The w h i l e loop i s t o r e t r y i f t h e w r i t e f a i l s
whi le ( j c m d m a w r i t e ( w o r k i n g a d d r e s s , c u r r e n t t r a n s f e r , d e v i d ) ) ;
c o m p l e t e d l e n g t h += c u r r e n t t r a n s f e r ;
w o r k i n g a d d r e s s += c u r r e n t t r a n s f e r ;

/ / Done w r i t i n g . E x i t l oop
i f ( c o m p l e t e d l e n g t h == t o t a l t r a n s f e r )

break ;

/ / S t a r t t h e t r a n s f e r i f we haven ’ t a l r e a d y
i f ( ! s t a r t e d t r a n s f e r ) {

/ / I n i t i a t e JCM w r i t e
s t a r t j c m ( JTAG WRITE , t o t a l t r a n s f e r , c o n t r o l w o r d ) ;
s t a r t e d t r a n s f e r = t r u e ;

}
/ / I f we have w r i t t e n enough t o c l e a r t h e i n t e r r u p t , w a i t f o r

i n t e r r u p t
i f ( j t a g i n t e r r u p t i s c l e a r e d ( ) ) {

/ / Wait u n t i l FIFO i s empty enough
w a i t f o r j c m i n t e r r u p t ( ) ;

}
}

i f ( ! s t a r t e d t r a n s f e r ) {
/ / I n i t i a t e JCM w r i t e
s t a r t j c m ( JTAG WRITE , t o t a l t r a n s f e r , c o n t r o l w o r d ) ;
s t a r t e d t r a n s f e r = t r u e ;

}
/ / P o l l i n g i n u s e r space t o f i n i s h up t r a n s f e r
break ;

Figure 5.6: JTAG Write IOCTL Operation

are available so the user space code does not have to deal with the base address of the hardware

modules or the specifics of reading and writing registers in the modules.

The write operation is used to write data to the slave device (connected via JTAG or Se-

lectMAP) using the firmware modules described in the previous chapter. In this case, the third

IOCTL parameter is a pointer to a struct that needs to be copied from user space. This struct con-

tains the address of the first word in memory to be written to the slave device, the number of words

to be transferred, and the data that should be written to the control register of the firmware module.
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After extracting this data and saving it, the main loop of this operation begins. This loop is shown

in Figure 5.6.

The first step is to determine the length of the next DMA transfer. The maximum length

of a DMA transfer is 1024 due to the size of the DMA buffer. If there are 1024 or more words

that remain in the total transfer, this is selected as the length of the current transfer. If not, the

number of remaining words in the transfer is selected. Once the length of the current transfer has

been selected, the actual DMA transfer can begin. Once it has finished, the number of completed

words thus far in the transfer is incremented, as is the address of the next data to be written. If

the transfer is complete, the loop will break at this point. If not, the JTAG or SelectMAP control

register will be written to initiate the transfer in the hardware module (if it has not already been

initiated). Finally, the last step in the loop is to sleep until the FIFO half empty interrupt fires. This

call is surrounded by a check to the status register of the hardware module to ensure that enough

data has been written to clear the interrupt. This is important because the interrupt is rising edge

sensitive, meaning that it will only trigger as it goes from low to high. If the process goes to sleep

waiting for the interrupt while the interrupt line is high, it will time out because the interrupt will

never fire again.

The read operation is similar and uses the same struct for the third parameter as is described

above. The main loop of the read operation is shown in Figure 5.7. Before entering this loop, the

read transfer is started in the firmware module and the process sleeps until the interrupt indicating

that the FIFO has reached half full arrives. In the main loop, the length of the current transfer is

computed just as before. Then a DMA read operation is started and the completed length and the

destination address are incremented upon completion. If there are still 1024 or more words to be

read from the device, the process will sleep until the FIFO halfway mark interrupt fires again. If

not, the driver simply polls the status register of the firmware module until the transfer is complete

because the FIFO interrupt will not fire again. Once this is complete, it will return to the top of the

loop and initiate a DMA transfer to read the remaining words from the device.

5.4.3 User Space Changes

The changes to user space code are relatively minor. A DMA driver class has been created

which handles all interactions with the device drivers in the kernel. This includes making IOCTL
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whi le ( c o m p l e t e d l e n g t h < t o t a l t r a n s f e r ) {
/ / S e l e c t how many words t o t r a n s f e r
c u r r e n t t r a n s f e r = ( c o m p l e t e d l e n g t h + DMA READ TRANSFER LENGTH >

t o t a l t r a n s f e r ) ? r e m a i n d e r w o r d s : DMA READ TRANSFER LENGTH ;

/ / read t h e n e x t s e t o f words and i n c r e m e n t a d d r e s s / c o m p l e t e d word
c o u n t e r

/ / The w h i l e loop i s t o r e t r y i f t h e read f a i l s
whi le ( j cm dma read ( w o r k i n g a d d r e s s , c u r r e n t t r a n s f e r , d e v i d ,

jcmBaseAddress + JCM DMA CONTROL OFFSET) ) ;
c o m p l e t e d l e n g t h += c u r r e n t t r a n s f e r ;
w o r k i n g a d d r e s s += c u r r e n t t r a n s f e r ;

/ / At t h i s p o i n t , t h e FIFO i n t e r r u p t w i l l n e v e r f i r e
i f ( ( t o t a l t r a n s f e r − c o m p l e t e d l e n g t h ) < JTAG FIFO THRESHOLD ) {

/ / Wait f o r t r a n s f e r t o c o m p l e t e
whi le ( j c m i s b u s y ( ) ) ;
/ / A f t e r t h i s wai t , r e t u r n t o t h e t o p o f loop and read u n t i l

c o m p l e t e
}
/ / I f we have read enough da ta f o r t h e i n t e r r u p t t o c l e a r , w a i t f o r

i n t e r r u p t
e l s e i f ( j t a g i n t e r r u p t i s c l e a r e d ( ) ) {

w a i t f o r j c m i n t e r r u p t ( ) ;
}

}
break ;

Figure 5.7: JTAG Read IOCTL Operation

calls and creating structs to be passed to kernel space. To maintain backwards compatibility in

the software with older hardware versions, an object of this class is created only if the current

firmware version supports DMA. This happens automatically based on the contents of a version

register present in the firmware. When the DMA driver object is used, all interactions with the

hardware that occur in the user space code are automatically redirected to the DMA driver object

with no user intervention. In this way, high-level user code that makes use of the JCM software

library does not need to change when using different firmware versions.

This chapter has described the changes that have been made to the Linux kernel of the JCM.

These changes are in the form of device tree nodes and kernel modules which facilitate software

interaction with the firmware modules described previously. The performance of this system will

be described in the following chapter.
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CHAPTER 6. PERFORMANCE

This chapter analyzes the performance of the new JCM system with DMA. First, the data

rates of the new system will be compared with the original JCM, followed by a comparison of the

processor utilization. This leads into a discussion of the Multi-JTAG system made possible by the

more efficient utilization of processor resources.

6.1 Data Rate

All of the data rate measurements in this section were obtained using the same method

which was described in Section 3.2.3. The time it takes to transfer a large amount of data (800 Mb

for JTAG, 4,000 Mb for SelectMAP) between the JCM and a slave device is measured. Then the

size of the transfer is divided by the measured time to get the data rate in Mbps.

A chart comparing the JTAG data rates with and without DMA is shown in Figure 6.1. The

differences are hard to see at lower clock speeds because the version without DMA does not have

too much trouble keeping up. However, at higher clock speeds the standard version falls well short

of the potential maximum data rate. The DMA version, on the other hand, remains very close to

the maximum data rate for all clock speeds. The increased speed and efficiency of moving data to

the module using DMA means that the processor is able to feed data to the module more quickly,

increasing the data rate as expected.

The difference between read and write operations using DMA is also much smaller with

writes just barely edging out reads in terms of data rate. This is due to the state machine changes

that make it so a read transfer can happen without first filling the write FIFO. This way, no unnec-

essary data is transferred to the module during a read, which increases the data rate.

The data rates for 8-, 16-, and 32-bit SelectMAP are shown in Figures 6.2, 6.3, and 6.4 re-

spectively. The increased data rate that DMA can provide is even more apparent in the SelectMAP

interface because the potential data rate is so much higher. Notice that the standard JCM transfers
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Figure 6.1: JTAG Data Rate Comparison

cannot exceed a data rate of about 100 Mbps. The data rate with DMA, on the other hand, can

exceed 950 Mbps in some configurations.

This is a huge improvement over the original design, but it still is not perfect. When using

32-bit mode at high clock speeds, the data rate actually starts to drop compared to lower clock

speeds. This appears to be because the driver times out occasionally when waiting for interrupts

to arrive. At a 50 MHz clock in 32-bit mode, the speed at which the DMA engine moves data in

and out of the hardware module is similar to the speed at which the module moves data in and

out of the FIFOs while performing reads and writes using SelectMAP. This appears to cause some

glitches on the FIFO half full interrupt line as the number of words in the FIFO hovers around the

half full threshold. These glitches are tricky to guard against and lead to some missed interrupts in

the driver. The driver recovers using a timeout when waiting for an interrupt, but the extra time it

takes to wake up limits the data rate. Understanding this issue more fully and addressing it is an

important task for future work.

There is also a clear difference in the data rate of reads and writes at high speeds using

SelectMAP in 16-bit or 32-bit mode. The maximum data rate of a write operation is about 950

Mbps, whereas the maximum data rate of a read is only about 550 Mbps. The reason for this
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Figure 6.2: 8-Bit SelectMAP Data Rate Comparison

is not clear at this time, but one possibility is that writes to main memory (which would occur

when using DMA to read from a module) are given less priority by the memory controller than

reads from memory. This could create a bottleneck and extend the time of DMA transfers from

the hardware module to memory when there is other memory traffic. Exploring this aspect of the

performance is a good opportunity for future work.

6.2 Processor Utilization

The processor utilization during write operations using various interfaces is shown in Fig-

ure 6.5. Previously, the processor utilization was greater than 99% whenever the JCM hardware

modules were in use. Utilization approaches this for high throughput configurations such as 16-

and 32-bit SelectMAP operating at high frequencies. This happens because the user program never

gets to sleep for very long before the process wakes up to start new DMA transfers. Even so, the

utilization never exceeds 84% when using the SelectMAP interface. This number could potentially

be reduced by increasing the size of the FIFO within the SelectMAP module and transferring more
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Figure 6.3: 16-Bit SelectMAP Data Rate Comparison

data at a time with DMA. This way, the processor does not have to interact with the hardware as

often.

When using a lower throughput interface like JTAG, the utilization can be as low as 1%.

Even at its maximum speed, the processor utilization using JTAG never exceeds 6%. This is a

huge improvement over the previous system and it leaves the processor open to do a variety of

other tasks. The Multi-JTAG system takes advantage of this by managing multiple JTAG chains

using the same processor.

6.3 Multi-JTAG

As explained previously, the Multi-JTAG system can manage up to eight JTAG chains

simultaneously. The data rates of the system running eight JTAG chains is shown in Table 6.1

and the processor utilization is shown in Figure 6.5. Even while transferring data between eight

slave devices simultaneously, the data rate is higher than the data rate of the original JCM system.

It trails only slightly behind the improved data rate of the DMA system as shown in the table.
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Figure 6.4: 32-Bit SelectMAP Data Rate Comparison

Table 6.1: Multi-JTAG Data Rates

Clock Rate Data Rate
(Single JTAG)

Data Rate Per Port
(Multi-JTAG)

Maximum Total Data Rate
(Multi-JTAG)

Total Data Rate
(Multi-JTAG)

10 MHz 9.96 Mbps 9.72 Mbps 80 Mbps 77.77 Mbps
17 MHz 16.54 Mbps 15.90 Mbps 136 Mbps 127.16 Mbps
25 MHz 24.70 Mbps 23.30 Mbps 200 Mbps 186.37 Mbps
31 MHz 29.03 Mbps 27.12 Mbps 248 Mbps 216.94 Mbps
38 MHz 35.07 Mbps 32.33 Mbps 304 Mbps 258.61 Mbps
50 MHz 48.77 Mbps 43.71 Mbps 400 Mbps 349.65 Mbps

These results are significant because a single system can be used to test up to 8 devices in parallel

without significant performance degradation. This allows for much more efficient use of available

hardware, potentially relieving a cost burden on JCM users as well as a labor burden on our lab

that must employ students to build JCM Breakout Boards and other hardware. The Multi-JTAG

system has been deployed on the TURTLE project mentioned in Chapter 2. Researchers on the

project use only two JCM systems to inject faults on 10 different boards simultaneously.
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Figure 6.5: Processor Utilization Using DMA

This chapter has presented the performance of the new JCM architecture described in this

thesis. The improvements in data rate and utilization provide higher speed configuration manage-

ment and more efficient hardware usage. There is still room for improvement because the max-

imum data rates are not achieved at higher clock rates, but it provides much better performance

over the previous version of the JCM.
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CHAPTER 7. CONCLUSION

The system described in this thesis has improved upon the original JCM by adding DMA

and interrupt support. This has resulted in faster data rates (up to 9.97x speedup) using both the

JTAG and SelectMAP interfaces. It has also decreased processor utilization dramatically, improv-

ing the overall performance and responsiveness of the system. By decreasing processor utilization,

the JCM is also able to manage up to eight JTAG chains simultaneously. This multi-JTAG system

has been used in the BYU TURTLE project to collect fault injection data from ten FPGAs using

only two JCMs.

There are still many opportunities for future work on this system. Some aspects of the per-

formance are still not fully understood and require further investigation to improve. For example,

the reason behind the slower upper limit of the data rate of SelectMAP read operations compared

to write operations is still unknown and needs to be resolved. The exact factors that limit the data

rate of the SelectMAP interface at high speeds are also unknown.

The processor utilization is still very high when the SelectMAP interface operates at high

speeds. This could potentially be reduced by increasing the size of the buffer FIFOs and transfer-

ring more data at a time via DMA. More experimentation with buffer and transfer sizes could lead

to lower utilization and possibly even higher data rates.

The basic functionality of the JCM also has room to expand to incorporate more than just

Xilinx FPGAs. The SelectMAP interface is unique to Xilinx devices, but the JTAG interface is

used in thousands of other devices. The JCM could be not only an FPGA configuration manager,

but also a flexible JTAG tool that can be used to interact with a wide variety of electronics. The

JCM software is currently being revised to further decouple basic JTAG functionality from Xilinx-

specific functionality. This will allow for more flexible JTAG usage in various situations.

The user interface to the JCM presents more opportunities for improvements. A client-

server model is under development that will replace the current model in which user-created pro-

61



www.manaraa.com

grams are run natively on the JCM. With the new model, the JCM will simply run a server program

that accepts requests from clients. User programs will consist of Python scripts that open a con-

nection to the JCM server and then send a series of requests to the server. This model will make

it easier to utilize the multiple JTAG ports by letting the server take care of executing requests in

parallel. It will also make rapid development and scripting simpler for users and remove the need

for compilation on the JCM.

The JCM has been an essential part of many of the research activities of the BYU Con-

figurable Computing Lab. The need for high-speed configuration management will only increase

as larger and more complex devices are released. The improvements to the JCM described in this

thesis make it even more capable of filling that need as a programmable, high-speed configuration

manager.
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